Experimental study of sandy slope-pipe interaction under loading

Expand
  • 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China 2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
YU Wen-zhao, female, born in 1999, Master’s student, focusing on the subsurface pipeline optical fiber monitoring. E-mail: yuwenzhao@smail.nju.edu.cn

Online published: 2024-12-25

Supported by

the National Science Fund for Distinguished Young Scholars of China (42225702), the General Project of National Natural Science Foundation of China (42077235) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0162).

Abstract

With the rapid development of key projects in China, such as West-to-East Gas Transmission and South-to-North Water Diversion, buried pipelines will inevitably pass through the mountainous area and are affected by regional topography and landforms. However, the interaction mechanism between slope and pipelines is still relatively unclear. In this study, the model tests on sandy slope-pipe interaction under loading are carried out in laboratory based on distributed strain sensing (DSS) and particle image velocimetry (PIV) technologies. The factors influencing the bearing capacity of the foundation are investigated. The failure characteristics of the slope and the structural responses of the buried pipeline are also explored. The research results show that: (1) The slope foundation has undergone three stages: elastic compaction, local shear and overall destruction. The foundation shows asymmetrical wedge-shaped failure pattern. (2) With the increase in slope angle, the ultimate bearing capacity of the foundation decreases. Under the same slope angle, the presence of pipeline reduces the ultimate bearing capacity of the slope foundation. (3) With the increase in slope angle, the influence of the pipeline on the slope failure mechanism increases. (4) Under the loading of the slope, the circumferential strain in the cross-section of the buried pipe is “elliptically” distributed, and an ellipticity calculation formula and a simplified calculation model of the soil resistance around the pipe circumference are proposed. This study can provide a reference for the deformation control and structural design of buried pipelines in sandy slopes.

Cite this article

YU Wen-zhao, ZHU Hong-hu, WANG De-yang, XIE Tian-cheng, PEI Hua-fu, SHI Bin, . Experimental study of sandy slope-pipe interaction under loading[J]. Rock and Soil Mechanics, 2024 , 45(5) : 1309 -1320 . DOI: 10.16285/j.rsm.2023.5705

Outlines

/